Multivariate Regression Trees
نویسنده
چکیده
منابع مشابه
Multivariate Dyadic Regression Trees for Sparse Learning Problems
We propose a new nonparametric learning method based on multivariate dyadic regression trees (MDRTs). Unlike traditional dyadic decision trees (DDTs) or classification and regression trees (CARTs), MDRTs are constructed using penalized empirical risk minimization with a novel sparsity-inducing penalty. Theoretically, we show that MDRTs can simultaneously adapt to the unknown sparsity and smooth...
متن کاملMultivariate regression trees for analysis of abundance data.
Multivariate regression tree methodology is developed and illustrated in a study predicting the abundance of several cooccurring plant species in Missouri Ozark forests. The technique is a variation of the approach of Segal (1992) for longitudinal data. It has the potential to be applied to many different types of problems in which analysts want to predict the simultaneous cooccurrence of sever...
متن کاملStepwise Induction of Model Trees
Regression trees are tree-based models used to solve those prediction problems in which the response variable is numeric. They differ from the better-known classification or decision trees only in that they have a numeric value rather than a class label associated with the leaves. Model trees are an extension of regression trees in the sense that they associate leaves with multivariate linear m...
متن کاملRough Set Approach to Multivariate Decision Trees Inducing
Aimed at the problem of huge computation, large tree size and over-fitting of the testing data for multivariate decision tree (MDT) algorithms, we proposed a novel roughset-based multivariate decision trees (RSMDT) method. In this paper, the positive region degree of condition attributes with respect to decision attributes in rough set theory is used for selecting attributes in multivariate tes...
متن کاملFinding structure in data using multivariate tree boosting
Technology and collaboration enable dramatic increases in the size of psychological and psychiatric data collections, but finding structure in these large data sets with many collected variables is challenging. Decision tree ensembles such as random forests (Strobl, Malley, & Tutz, 2009) are a useful tool for finding structure, but are difficult to interpret with multiple outcome variables whic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007